Computing Ground States of Spin-1 Bose-Einstein Condensates by the Normalized Gradient Flow

نویسندگان

  • Weizhu Bao
  • Fong Yin Lim
چکیده

In this paper, we propose an efficient and accurate numerical method for computing the ground state of spin-1 Bose–Einstein condensates (BECs) by using the normalized gradient flow or imaginary time method. The key idea is to find a third projection or normalization condition based on the relation between the chemical potentials so that the three projection parameters used in the projection step of the normalized gradient flow are uniquely determined by this condition as well as the other two physical conditions given by the conservation of total mass and total magnetization. This allows us to successfully extend the most popular and powerful normalized gradient flow or imaginary time method for computing the ground state of a single-component BEC to compute the ground state of spin-1 BECs. An efficient and accurate discretization scheme, the backward-forward Euler sine-pseudospectral method, is proposed to discretize the normalized gradient flow. Extensive numerical results on ground states of spin-1 BECs with ferromagnetic/antiferromagnetic interaction and harmonic/optical lattice potential in one/three dimensions are reported to demonstrate the efficiency of our new numerical method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Mass and Magnetization Conservative and Energy-Diminishing Numerical Method for Computing Ground State of Spin-1 Bose-Einstein Condensates

In this paper, a mass (or normalization) and magnetization conservative and energydiminishing numerical method is presented for computing the ground state of spin-1 (or F = 1 spinor) Bose–Einstein condensates (BECs). We begin with the coupled Gross–Pitaevskii equations, and the ground state is defined as the minimizer of the energy functional under two constraints on the mass and magnetization....

متن کامل

Ground States of two-component Bose-Einstein Con- densates with an External Driving Field

In the paper, we prove existence and uniqueness results for the ground states of the coupled Gross-Pitaevskii equations for describing two-component Bose-Einstein condensates with an external driving field and obtain the limiting behavior of the ground states with large parameters. Efficient and accurate numerical methods based on continuous normalized gradient flow and gradient flow with discr...

متن کامل

Numerical methods for computing the ground state of spin-1 Bose-Einstein condensates in uniform magnetic field

In this article, we propose efficient and accurate numerical methods for computing the ground state solution of spin-1 Bose-Einstein condensates subject to uniform magnetic field. The key idea in designing the numerical method is based on the normalized gradient flow with the introduction of the third normalization condition, together with the two physical constraints on the conservation of tot...

متن کامل

Efficiently computing vortex lattices in fast rotating Bose-Einstein condensates

We propose an efficient and spectrally accurate numerical method for computing vortex lattice structures in fast rotating Bose-Einstein condensates (BECs) with strongly repulsive interactions. The key ingredients of the method is to discretize the normalized gradient flow under rotational frame by Fourier spectral method in space and by backward Euler method in time. Different vortex lattice st...

متن کامل

Numerical methods for computing the ground state of spin-1 Bose-Einstein condensates in a uniform magnetic field.

We propose efficient and accurate numerical methods for computing the ground-state solution of spin-1 Bose-Einstein condensates subjected to a uniform magnetic field. The key idea in designing the numerical method is based on the normalized gradient flow with the introduction of a third normalization condition, together with two physical constraints on the conservation of total mass and conserv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 30  شماره 

صفحات  -

تاریخ انتشار 2008